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From the Liouville Equation to the Generalized
Boltzmann Equation for Magnetotransport
in the 2D Lorentz Model

A. V. Bobylev,1, 4 Alex Hansen,2, 5 J. Piasecki,3 and E. H. Hauge1
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We consider a system of non-interacting charged particles moving in two dimen-
sions among fixed hard scatterers, and acted upon by a perpendicular magnetic
field. Recollisions between charged particles and scatterers are unavoidable in
this case. We derive from the Liouville equation for this system a generalized
Boltzmann equation with infinitely long memory, but which still is analytically
solvable. This kinetic equation has been earlier written down from intuitive
arguments.

KEY WORDS: Kinetic theory; non-Markovian effects; magnetotransport;
Lorentz model.

1. INTRODUCTION

The Lorentz model(1�3) where a particle moves among and collides with
fixed scatterers has provided a rich testing ground for kinetic theory. In
particular, the Boltzmann equation is not only exactly solvable in this
model, but the equation itself is exact in the Grad limit (to be defined
below). The Stosszahlansatz used in constructing the Boltzmann equation
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relies implicitly on the assumption that the particle never returns to a scat-
terer after having collided with it. The probability of such recollisions
vanishes in the Grad limit. On this basis the Boltzmann equation for the
standard Lorentz model is taken to be exact in the Grad limit.

Recently, however, an interesting exception was discovered(4, 5) to this
state of affairs. Let the particle have electric charge &e and move on a
plane pierced by a perpendicular constant magnetic field B. The particle
moves along circle arcs between collisions, and if it does not encounter
a new scatterer along the arc, it will recollide with the initial scatterer.
This destroys the above assumption and renders the Boltzmann equation
invalid. Note that both the (two-) dimensionality of space and the presence
of a perpendicular magnetic field are essential here.

In refs. 4 and 5 a generalization of the conventional Boltzmann equa-
tion was proposed that takes into account consecutive recollisions with the
same scatterer. The arguments leading to this equation were intuitive, on
the same level as the Stosszahlansatz itself. Numerical simulations(6) sup-
port the results that were found using this generalized Boltzmann equation.
The aim of the present paper is to provide a microscopic underpinning to
the generalized Boltzmann equation in the form of a systematic derivation
from the Liouville equation. As a background we start by summarizing the
intuitive arguments leading to the generalized Boltzmann equation.

The charged particle moves on a plane of (large) area A, with N ran-
domly placed hard disk scatterers of radius a. We denote by n=N�A their
number density. The disks do not overlap.

The generalized Boltzmann equation describes the evolution of the
probability density f1(x, v, t) for finding the moving particle at time t at
position x with velocity v. This non-markovian kinetic equation has the form

D
Dt

f G(x, v, t)=na :
[t�T0]

k=0

e&&kT0 |
S1

dn(v } n)

_[%(v } n) bn +%(&v } n)] f G(x, S &k
0 v, t&kT0) (1)

where

f G(x, v, t)={ f1(x, v, t)
(1&e&&T0) f1(x, v, t)

if 0<t<T0

if t>T0

(2)

and where &=2 |v| na is the collision frequency and T0 the cyclotron
period. Furthermore,

D
Dt

=_ �
�t

+v }
�

�x
+(|_v) }

�
�v& (3)
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is the generator of free cyclotron motion with frequency |||=|=eB�m,
and [t�T0] the number of cyclotron periods T0=2?�| completed before
time t. The angular integration over the unit vector n in (1) is over the
entire unit sphere S 1 centered at the origin. In the gain term (positive con-
tribution), there appears the distribution acted upon by the operator bn ,
defined by

bn ,(v)=,(v&2(v } n) n) (4)

where , is an arbitrary function of v. The precollisional velocity v$=
v&2(v } n) n becomes v after the elastic collision with the immobile
(infinitely massive) scattering disk. Note that v$ } n<0. In the loss term
(negative contribution), the precollisional velocity, v, is also from the
hemisphere v } n<0. Finally, the shift operator S &k

0 , when acting on v,
rotates the velocity through the angle &k�, where � is the scattering angle
(from v$ to v).

When 0<t<T0 , [t�T0]=0, and f G(x, v, t)= f1(x, v, t). No recolli-
sions are yet possible and Eq. (1) reduces to the standard Boltzmann equa-
tion

D
Dt

f1(x, v, t)=na |
S 1

dn(v } n)[%(v } n) bn +%(&v } n)] f1(x, v, t)

=CBf1(x, v, t) (5)

where CB is the Boltzmann collision operator.
When t>T0 , the distribution f1(x, v, t) splits into two parts. With

probability exp(&&T0) the charged particle continues to perform free cyclo-
tron motion, having explored the whole circle during the first period T0 .
With probability [1&exp(&&T0)] the particle suffers collisions and
becomes a wandering particle among the hard disks. Since the probability
of being a wandering particle is less than unity, the distribution for t>T0

should be renormalized. Hence the need for (2).
The sum in the generalized equation (1), from k=1 to k=[t�T0],

takes into account all possible recollision events. The collision ``now'' can
be the k th recollision, with every recollision having the same scattering
angle �, equal to the one of the initial collision at t&kT0 . Only this initial
collision, with incoming velocity S &k

0 v, is described by the Boltzmann
operator CB, all subsequent ones follow from dynamics alone, weighted by
the survival probability from one collision to the next, exp(&&T0). Thus,
for a sequence of k recollisions one gets the factor exp(&k&T0). Finally,
summation over k from 1 to [t�T0] takes all possible recollision sequences
into account.
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On the basis of an intuitive derivation, as sketched above, and by
analogy to the results for the general Lorentz model, refs. 4 and 5 assume
that the generalized Boltzmann equation (1) gives an exact description of
the time evolution of our system in the Grad limit,

lim
Grad

={a � 0 and N�A=n � �
na=const

(6)

According to (6) the radius of the scattering disks approaches zero but
their number density increases at the same time in such a way that the
mean free path of the wandering particle, 4=(2na)&1 remains constant.

In the next section, we discuss the initial value problem for the
Liouville equation. In Section 3, the effect of recollisions is analyzed, and
Section 4 contains the derivation of the generalized Boltzmann equation.
We conclude with a short summary. The shift operator along the trajectory
involving recollisions is described in the appendix.

2. DYNAMICAL EQUATIONS

We denote by F(x, v, t; y1 ,..., yN) the joint probability density for find-
ing the moving point charge at time t at point x with velocity v among N
hard disk scatterers located at positions y1 , y2 ,..., yN . F satisfies the nor-
malization condition

|
R2

dv |
0

dx |
0N

dy1 } } } dyN F(x, v, t; y1 , y2 ,..., yN)=1 (7)

and is the solution of the Liouville equation

D
Dt

F(x, v, t; y1 , y2 ,..., yN)=a :
N

j=1

T (x&yj , v) F(x, v, t; y1 , y2 ,..., yN) (8)

where T (x&yj , v) is the binary collision operator for scatterer j,

T (x&yj , v)=|
S 1

dn(v } n)[%(v } n) bn +%(&v } n)] $(x&y j&an) (9)

The operator bn acting on the velocity vector has been defined in (4), and
an is the point of impact with respect to the center of the disk.
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At time t=0, the initial condition for the Liouville equation (8) is
assumed to be of the form

F(x, v, t=0; y1 ,..., yN)= f1(x, v, 0) _`
N

i=1

%( |x&yi |&a)& \(y1 ,..., yN)
1&?na2 (10)

Here f1(x, v, 0) is the initial state of the particle, and \(y1 ,..., yN) describes
the static, non-overlapping distribution of scattering disks,

\(y1 ,..., yN)= `
1�i< j�N

%( |yi&yj |&2a)�N (11)

where N is the normalizing factor such that �0N dy1 } } } yN \(y1 ,..., yN)=1.
To complete the statement of the problem, we shall for simplicity

assume that the region 0 enclosing the system has finite area A and no
boundaries (e.g., a two-dimensional torus). We furthermore assume that
the linear dimensions of 0 are very large compared to the cyclotron radius.

The factor [1&?na2]&1 assures the proper normalization (7) of the
initial condition since

|
0 N

dy1 } } } dyN \(y1 ,..., yN) _`
N

i=1

%( |x&yi |&a)&=1&?na2 (12)

Clearly, the probability density f1(x, v, t) is obtained from F(x, v, t;
y1 ,..., yN) by integration over the positions of all scatterers,

f1(x, v, t)=|
0 N

dy1 } } } dyN F(x, v, t; y1 ,..., yN) (13)

Integrating the Liouville equation (8) we thus find

D
Dt

f1(x, v, t)=aN |
0

dy1 T (x&y1 , v) f2(x, v, t; y1) (14)

where

f2(x, v, t; y1)=|
0N&1

dy2 } } } dyN F(x, v, t; y1 ,..., yN) (15)

Equation (14) will be the main object of our study. Using the explicit form
of the collision operator (9), we rewrite it as

D
Dt

f1(x, v, t)=an |
S1

dn(v } n)[%(v } n) bn +%(&v } n)] Ia(x, v, n, t) (16)
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where

Ia(x, v, n, t)=A |
0N&1

dY F(x, v, t; x&an, Y) (17)

where from now on we use the short-hand notation Y=(y2 ,..., yN).
In Eq. (17), y1=x&an, which corresponds to the precollisional

presence of the particle at the surface of the scatterer. As has already been
mentioned in the Introduction, only velocities such that (v } n)<0 appear
as argument in the distribution F.

Our aim here is to demonstrate that Eq. (16) becomes a closed kinetic
equation for the distribution f1(x, v, t) in the Grad limit (6), and that
taking this limit we shall recover the generalized Boltzmann equation (1).

We note that the Liouville equation (8) implies the relation

F(x=y+an, v, t; y, Y)=F(y+aS (N )
&t n, S (N )

&t v, t=0; y, Y) (18)

where S (N )
&t denotes the backwards shift operator along the exact phase

trajectory of the N-scatterer problem. A crucial point is to separate clearly
two possibilities: (a) The particle did not collide with the scatterer at y
before time t. (b) It did (leading to the problem of recollisions). The conse-
quences of this distinction will be discussed in the next section.

3. RECOLLISIONS

For any fixed configuration of scatterers (y, Y)=(y, y2 ,..., yN), one can
construct the past history for the moving particle leading to the position
y+an and velocity v at time t. The probability weight for the initial condi-
tions at t=0 is defined in Eq. (10).

At t>0, when x=y+an, the particle is about to collide with the scat-
terer at y, since (v } n)<0. Depending on the past history, we separate the
integration domain 0N&1 in (17) into a union of disjoint time-dependent
subdomains 2k(y+an, v, t) defined as

20(y+an, v, t)=[Y : no collision with scatterer at y before t] (19)

and

2k(y+an, v, t)=[Y : k collision with scatterer at y before t] (20)

where k=1, 2,..., �. Clearly, we have

2j (y+an, v, t) & 2k(y+an, v, t)=< (21)
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when j{k, and

.
�

k=0

2k(y+an, v, t)=0N&1 (22)

Thus, we may rewrite Eq. (17) as

Ia(y+an, v, n, t)= :
�

k=0

A |
2k(y+an, v, t)

dY F(y+an, v, t; y, Y) (23)

We now introduce a further partition of each 2k(y+an, v, t), k=
1,..., �, into two disjoint parts,

2k(y+an, v, t)=2(0)
k (y+an, v, t) _ 2 (1)

k (y+an, v, t) (24)

2 (0)
k (y+an, v, t) & 2 (1)

k (y+an, v, t)=< (25)

such that

2(0)
k (y+an, v, t)=[Y : no collisions with scatterers at Y within the

time interval [t&kTa , t]] (26)

Here Ta is the period between two successive collisions of the particle with
the scatterer at y.

If Y # 2 (0)
k (y+an, v, t), then the particle collided with the scatterer at

y k times during the time interval [t&kTa , t]. Furthermore, it had not
collided with this scatterer before t&kTa . We may therefore conclude that

Y # 2 (0)
k (y+an, v, t) O F(y+an, v, t; y, Y)

=F(y+aS &k
a n, S &k

a v, t&kTa ; y, Y) (27)

where Sa is the shift operator along the trajectory of the particle between
two collisions with the sactterer at y, in the absence of other scatterers. We
construct this operator explicitly in the Appendix, see also ref. 5.

In the Grad limit, the volume of Y-space for which collisions with
other scatterers occur between recollisions with the same scatterer is negli-
gible compared to the volume corresponding to a sequence of consecutive
recollisions, and in fact

lim
Grad

&2 (1)
k &=0 (28)
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where & } } } & represents the relative volume with respect to the set 0N&1.
The reason behind Eq. (28) is that the probability to return to the scatterer
at y after an intermediate collision with another scatterer involves an extra
power of a and thus vanishes in the Grad limit. The corresponding
problem in the absence of a magnetic field is discussed in ref. 2. Close to the
Grad limit, (28) allows us to change the volume of integration in (23) from
2k(y+an, v, t) to 2 (0)

k (y+an, v, t).
Let us introduce the limit function

Fk(y, S &k
0 v, t&kT0)= lim

Grad \
A

&2 (0)
k (y+an, v, t)&+

_|
2k

(k)(y+an, v, t)
dY F(y+an, v, t; y, Y); 2 (0)

0 #20

(29)

where (27) has been used for convenience. This limit function no longer
depends on the number of scatterers, N.

In terms of Fk , the Grad limit of (23) becomes

I0(y, v, n, t)= :
[t�T0]

k=0

&2 (0)
k (y, v, t)& Fk(y, S &k

0 v, t&kT0) (30)

Note, with reference to the Appendix, that the shift operator S &k
0 depends

on the vector n, even in the Grad limit.
The relation

2 (0)
k (y, v, t)=20(y, S &k

0 v, t&kT0) & 1 (t&kT0 , t) (31)

is valid in the Grad limit where the set 1 (t1 , t2) corresponds to those
regions of Y-space in which the particle suffers no collisions with the N&1
scatterers at Y during the time interval (t1 , t2).

We now evaluate the volumes of the sets 20(y, S &k
0 v, t&kT0) and

1 (t1 , t2). In order to do so, we define the set complementary to 20(y, v, t),

2� 0(y, v, t)=[Y : at least one collision with scatterer at y before t] (32)

If t�T0 , two types of histories consistent with the condition in (32) are
possible: (a) No collisions with other scatterers occured within the time
interval (t&T0 , t). (b) The particle collided with other scatterers after the
previous collision with the scatterer at y. Close to the Grad limit possibility
(b) is improbable and in the limit, possibility (a) is realized with probabil-
ity 1. If, on the other hand, t<T0 , the condition in (32) can only be
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realized by possibility (b), the probability of which vanishes in the Grad
limit. Thus, the characteristic function / is, in this limit,

/2� 0(y, v, t)={0
/1 (t&T0 , t)

if 0<t<T0

if t>T0

(33)

The characteristic function for the set 20(y, v, t) is

/20(y, v, t)=1&/2� 0(y, v, t) (34)

We now evaluate the characteristic function of the set 1 (t1 , t2). Let L

be the trajectory of the particle for t1<{<t2 . Then,

L=[x({) | t1<{<t2] (35)

The distance between L and a given point a is

dist(L, a)= min
t1<{<t2

|x({)&a| (36)

The characteristic function /1 (t1 , t2)��for finite N��is given by

/1 (t1 , t2)= `
N

j=2

%[dist(L, yj )&a] (37)

The volume of the set 1 (t1 , t2) is then the integral

&1 (t1 , t2)&=
1

AN&1 |
0N&1

dY /1 (t1 , t2)r_ 1
A |

0
dy %(dist(L, y)&a)&

N&1

(38)

We have on the right-hand side of this expression assumed that we are
close to the Grad limit so that the positions of the scatterers become inde-
pendent of each other. We evaluate the integral

1
A |

0
dy %(dist(L, y)&a)=_1&

2aL(t1 , t2)
A &+O(a2) (39)

where L(t1 , t2) is the length of the curve L. Combining (38) and (39), and
going to the Grad limit, we find that

&1 (t1 , t2)&=e&2naL(t1 , t2)=e&&(t2&t1) (40)
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where we have used that the particle moves with constant speed v so that
L(t1 , t2)=v(t2&t1).

Using Eq. (40) combined with Eqs. (33) and (34), we find that

&20(y, v, t)&={1
1&e&&T0

if 0<t<T0

if t>T0

(41)

We are now in the position to calculate the volume of 2 (0)
k (y, v, t)

through Eq. (31) combined with Eqs. (40) and (41).
The set 1 (t&kT0 , t), consists of all Y such that the particle has

k consecutive collisions with the scatterer at y without collisions with
other scatterers. If we follow the motion of the particle during the time
interval [t&(k+1) T0 , t&kT0] that preceeds the time interval for which
1 (t&kT0 , t) is defined, and we assume t large enough so that t&(k+1) T0

>0, two histories are possible: (a) The particle has collided with other
scatterers within the time interval [t&(k+1) T0 , t&kT0], or (b) it has
collided with the scatterer at y, in which case it has not collided with any
other scatterer during this period. If (a) is the case, then the configuration
belongs to the set 2 (0)

k (y, v, t)��see Eq. (31)��otherwise the configuration
belongs to the set 1 (t&(k+1) T0 , t). Thus, we have that

1 (t&kT0 , t)=2 (0)
k (y, v, t) _ 1 (t&(k+1) T0 , t) (42)

Furthermore,

2 (0)
k (y, v, t) & 1 (t&(k+1) T0 , t)=< (43)

The volume of the set 2(0)
k (y, v, t) is therefore

&2(0)
k (y, v, t)&=&1 (t&kT0 , t)&&&1 (t&(k+1) T0 , t)& (44)

Equation (40), which is exact in the Grad limit, gives

&2 (0)
k (y, v, t)&=e&&kT0(1&e&&T0) if t>(k+1) T0 (45)

If we now assume that kT0<t<(k+1) T0 so that 1 (t&(k+1) T0 , t)=<,
we have that 2 (0)

k (y, v, t)=1 (t&kT0 , t) and consequently,

&2 (0)
k (y, v, t)&=e&&kT0 if kT0<t<(k+1) T0 (46)
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Using Eqs. (45) and (46) (remember that S &k
0 depends on n), we may

rewrite Eq. (30)

I0(y, v, n, t)=(1&e&&T0) :
[t�T0]&1

k=0

e&&kT0Fk(y, S &k
0 v, t&kT0)

+e&&[t�T0] T0F[t�T0] \y, S &[t�T0]
0 v, t&_ t

T0& T + (47)

Our next task is to find the relation between f1(x, v, t) and Fk(y, v, t).

4. THE GENERALIZED BOLTZMANN EQUATION

The Grad limit of Eq. (16) becomes

D
Dt

f1(x, v, t)=an |
S1

dn(v } n)[%(v } n) bn +%(&v } n)] I0(x, v, n, t) (48)

with I0 given by Eq. (47) with y=x.
If t<T0 , as a consequence of Eq. (47) I0(x, v, n, t)=F0(x, v, t). To

express F0(x, v, t) through f1(x, v, t), we consider the right hand side of
(29) with k=0 and set for the moment

F(x, v, t; y, Y)#F (N )(x, v, t; y, Y) (49)

to stress that it is a solution of the N-scatterer problem. Near the Grad
limit, i.e., for sufficiently large N and small a provided Na=constant, we
have

F (N )(x, v, t=0; y, Y)r
1
A

F (N&1)(x, v, t=0; Y) (50)

(See Eq. (10) for a � 0.) Assuming that Y # 20(y+an, v, t) (i.e., no colli-
sions with the scatterer at y before time t), we obtain from (18)

F (N )(y+an, v, t; y, Y)=F (N )(y+aS (N )
&t n, S (N&1)

&t v, t=0; y, Y) (51)

Combining the last two equalities, we get

F (N )(y+an, v, t; y, Y)r
1
A

F (N&1)(y+an, v, t; Y) (52)
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for Y # 20(y+an, v, t). Thus, near the Grad limit we have from Eq. (29)

F0(y, v, t)r
1

&20(y+an, v, t)& |
20(y+an, v, t)

dY F (N&1)(y+an, v, t; Y) (53)

for all t>0. The simplest case 0<t<T0 , leads to the approximate
equalities

20(y, v, t)r0N&1 (54)

&20(y, v, t)&r1 O F0(y, v, t)r f1(y, v, t) (55)

which become exact in the Grad limit��see Eq. (41). Hence, for 0<t<T0 ,
Eq. (48) is identical to the usual Boltzmann equation (5) for f1(x, v, t). We
remark that this is perhaps the simplest way to extract the Boltzmann
equation directly from the Liouville equations in the Grad limit.

When t>T0 , 0N��which is the space over which F (N ) is averaged in
order to obtain f1��is split into two disjoint sets,

0N=A0 _ A1 (56)

where

A0=[(y1 ,..., yN) : no collisions during the period (t&T0 , t)] (57)

Both subsets A0 and A1 are defined for any given phase-time point (x, v, t),
t>T0 . If the particle is not scattered during the time (t&T0 , t), there was
no earlier scattering due to the periodicity of the motion. Thus, the subsets
A0 and A1 do not actually depend on time t>T0 and can be equally well
defined at t=T0 . The solution of the Liouville equation (8) with initial
conditions (10) for (y1 , Y) # A0 is

F (N )(x, v, t; y1 ,..., yN)

= f1(S0(&t) x, S0(&t) v, 0) _`
N

i=1

%( |S0(&t) x&yi |&a)& \(y1 ,..., yN)
1&?na2

(58)

where S0(2t) is the shift operator along the collisionless trajectory of the
particle from t to t+2t. Using Eq. (40), we find that in the Grad limit

&A0&=e&&T0 (59)
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and consequently

&A1&=1&e&&T0 (60)

We may write the distribution f1(x, v, t) for t>T0 as the sum of F averaged
over A0 and A1 ,

f1(x, v, t)=&A0& f (0)
1 (x, v, t)+&A1& f (1)

1 (x, v, t) (61)

where

f (i )
1 (x, v, t)=

1
&Ai& |

Ai

dy dY F (N )(x, v, t; y, Y), i=0, 1 (62)

We generalize the notation (61) to 0<t<T0 by setting A0=< and
A1=0N in such a case.

Let us consider Eqs. (27), (29), (48) and (47) for t>T0 . If k�1, in
(29), we may repeat the argumentation leading to equality (53) and obtain

Fk(y, S &k
0 v, t&kT0)r

1
&2 (0)

k (y+aS &k
0 n, v, t)& |

2k
(0)(y+aS0

&k n, v, t)
dY

_F (N&1)(y+aS &k
0 n, S &k

0 v, t&kT0 ; Y) (63)

where k=0,..., [t�T0], near the Grad limit. A minor change of notation (set
N=N� +1 and yi=y~ i&1 , i=2,...) leads to formulas similar to the definition
(62) of f (1)

1 with the only difference that the function F is averaged not over
the whole ``ergodic'' domain A1 , but over a subdomain 2 (0)

k /A1 . The final
step is to assume, without mathematical proof, that in the Grad limit

Fk(y, v, t)= f (1)
1 (y, v, t), k=0, 1,..., t>0 (64)

This assumption means that we can neglect in this limit the difference
between average values of F(x, v, t; y1 ,..., yN) taken over different subsets
2(0)

k of the ``ergodic'' set A1 . This assumption is in fact one of the central
postulates of kinetic theory (the average behavior of the test particle is the
same for almost all configurations of scatterers) and we admit it here
without proof. The corresponding rigorous result for the linear Boltzmann
equation (without magnetic field) was obtained in ref. 7. A rigorous proof
of this assumption represents a mathematical challenge beyond the scope of
the present paper. For the linear Boltzmann equation without magnetic
field, this challenge was met in ref. 7, and some of the rigorous mathemati-
cal arguments found there ca, indeed, be used to justify (64). Finally, we

1145From the Liouville Equation



note that the representation of f1(x, v, t) in the form (61) (cycling and
wandering particles, see refs. 4 and 5) makes sense only for t>T0 . At the
first stage of the motion, 0<t<T0 , all particles should be considered as
wandering, i.e., having a chance to undergo a collision in the future. This
explains why we put A1=0N and therefore f (1)

1 #f1 for 0<t<T0 , see
comment after Eq. (62). The above formulas (48), (58)�(62) define com-
pletely the non-markovian kinetic equation (48) in the Grad limit. The
final step is to reduce the equation to a more convenient form. To this end
we define f G by Eq. (2). Thus, we have the normalization

| dx dv f G(x, v, t)={1
1&e&&T0

if 0<t<T0

if t>T0

(65)

Equation (47) may thus be written

I0(x, v, t)= :
[t�T0]

k=0

e&&kT0 f G(y, S &k
0 v, t&kT0) (66)

The ``non-colliding'' distribution function f (0)
1 satisfies the transport

equation

D
Dt

f (0)
1 (x, v, t)=0 (67)

The ``colliding'' distribution function, f (1)
1 , satisfies the equation

D
Dt

(1&e&&T0) f (1)
1 (x, v, t)=n |

S 1
dn(v } n)[%(v } n) bn +%(&v } n)]

__ :
[t�T0]

k=0

e&&kT0 f G(y, S &k
0 v, t&kT0)& (68)

When t>T0 , we use the definition (2) and write this equation

D
Dt

f G(x, v, t)=n :
[t�T0]

k=0

e&&kT0 |
S 1

dn(v } n)[%(v } n) bn +%(&v } n)]

_ f G(y, S &k
0 v, t&kT0) (69)

When t<T0 , we add Eqs. (67) and (68). The resulting equation has the
same form as Eq. (69)��which is the generalized Boltzmann equation of
refs. 4 and 5.
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5. CONCLUSION

We have presented a systematic derivation of the generalized Boltzmann
equation (1) from the Liouville equation in the Grad limit. The derivation
was done at the traditional physicist level of rigor and we stressed several
points which were not proved mathematically. Moreover, a convergence of
the right hand side of Eq. (14) for f1(x, v, t) is obviously not equivalent to
convergence of the ``true'' function f (N )

1 to the solution of the generalized
Boltzmann equation. Therefore, there still remains a considerable effort
from a mathematical point of view to prove the validity of the generalized
Boltzmann equation at the same level of rigor as it was done for the usual
Boltzmann equation (see ref. 2 and references therein). However, some of
the basic ideas needed and some hints at the difficulties that need to be
overcome to construct such a proof can be found in the above ``physical
derivation.''

Another open problem is to clarify the connection of the generalized
Boltzmann equation with the BBGKY hierarchy. The arguments discussed
above show that the validity of the generalized Boltzmann equation follows
directly from N-scatterer dynamics in the Grad limit. The generalized
Boltzmann equation is clearly the non-markovian equation for a system
with strong long-time pair correlations in contradistinction to the usual
Boltzmann equation. It is therefore important to understand what the
correlation functions look like in this case.

In order to do this, one needs to consider the whole hierarchy and find
its asymptotic solution in the Grad limit. We hope to do this in a
forthcoming paper.

APPENDIX

In this Appendix, we construct the shift operator Sa which was defined
in (27). It shifts the particle from a position right before a collision with the
scatterer at y along a collisionless trajectory to a new precollisional posi-
tion on the surface of the scatterer.

We consider in the following a succession of collisions between the
charged particle and a single scatterer. Assume that the particle follows the
trajectory marked ``1'' in Fig. 1. This trajectory is a circle arc centered at a
distance 2 from the center of the scatterer. The scattering occurs on the
surface of the disk, with a scattering angle �, and the particle shifts to a
new cyclotron orbit ``2.'' Clearly &(v$ } n)=(v } n)=|v| sin(��2), where v$ is
the precollisional velocity and v the postcollisional one. As a result of this
symmetry, the center of the new orbit ``2'' has the same distance 2 from the
center of the scatterer as the previous orbit. Orbit ``2'' leads back to the
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Fig. 1. The charged particle follows orbit ``1'' and collides with the hard disk, thus shifting
to orbit ``2.'' It then recollides with the disk and shifts to orbit ``3.'' The cyclotron radius is
R and the distance between the centers of the cyclotron orbits to the center of the scatterer
is 2. The angles separating two subsequent collisions is 2;.

surface of the scatterer where a new collision occurs, and the particle is
shifted to a third cyclotron orbit ``3.'' The direction of n in the first collision
and n of the second collision is shifted by an angle 2;, where ; is given by

cos ;=
22&R2+a2

2a2
(70)

Here R is the cyclotron radius, and a is the radius of the scatterer.
The angle between two subsequent points of collision is 2; as seen

from the center of the scatterer. Similarly, the angle between these two
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points, as seen from the center of the cyclotron orbit one to the other, is 2#,
with

cos #=
R2+22&a2

2R2
(71)

The scattering angle in the second collision remains equal to that of the
first, �. Note that in the Grad limit, ;=(?&�)�2 can take any value from
0 to ?�2. On the other hand, # � 0 for all collisions in the Grad limit.

Thus, if we set v=(v, .v) and n=(1, .n) in polar coordinates, the shift
operator Sa is, with reference to the figure,

Sa(v, .v)=(v, .v+�&2#) ww�
Grad

(v, .v+�) (72)

with # given by (71). Similarly,

Sa(1, .n)=(1, .n+2;) (73)

where ; is given by (70).
In polar coordinates, the generalized Boltzmann equation (1) becomes

D
Dt

f G(x, .v , t)=
na
4

:
[t�T0]

k=0

e&&kT0 |
?

&?
d� sin }�2 }

_[ f G(x, .v&(k+1) �, t&kT0)& f G(x, .v&k�, t&k)

(74)

This was the form of the generalized Boltzmann equation used in refs. 4
and 5.
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